If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2b^2-12b+7=0
a = 2; b = -12; c = +7;
Δ = b2-4ac
Δ = -122-4·2·7
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{22}}{2*2}=\frac{12-2\sqrt{22}}{4} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{22}}{2*2}=\frac{12+2\sqrt{22}}{4} $
| 4x–6.2=3.4 | | 4t=5t-3t | | w+29=7w+22+9w-3 | | 3x+15/7+x+6/4=5 | | -36+9y=-26 | | –4x–(–14)=22 | | 5d+4d=3 | | 7x-9-2x=9x-8 | | -51=6v-3 | | 9w-3+7w+22=w+29 | | (2-4i)(3+5i)=0 | | 2+4x=2(4+x) | | –5–(x/6)=–14 | | x10=6 | | 2x-48=156 | | 60-1x=-9x+100 | | x^2-40x-40=0 | | x^2-40x=4=0 | | 2(x+5)^2-7=143 | | ^(2)-4)^(2)=x4 | | 180n=15 | | (x2-4)2=x4 | | 66=6x-21 | | -3=11r+68-3 | | 1+4r=13 | | 6+4x=1/3(6x=9) | | –6x–12=42 | | 5x-10=540 | | 1804n=15 | | 4x+3=2x+71-2x | | 4x-16x+32=0 | | 1=-8+3x |